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FLICHT TEST OF HIGH-DENSITY PHENOLIC-NYLON ON A SPACECRAFT
LAUNCHED BY THE PACEMAKER VEHICLE SYSTEM

By William G. Witte
Langiey Research Center

SUMMARY

High-density phenolic-nylon material was flight tested on a recoverable spacecraft
launched by the Pacemaker vehicle system. The spacecraft was a hemispherically blunted
cone with a cylindrical afterbody. The overall dimensions were a length of 29.5 inches
(74.9 cm) and a diameter of 10 inches (25.4 cm). Ablation performance data on the
phenolic-nylon were obtained by the use of ablation sensors and thermocouples and by
post-flight profile-change measurements.

Profile-change measurements were also obtained for several panels of low-density
materials attached to the spacecraft cylinder.

A comparison of measured heating rates with computed turbulent and laminar
heating rates indicated that the boundary layer underwent transition.

Flight data and computed test conditions are presented.
INTRODUCTION

High-density phenolic-nylon was the standard high-density charring ablator used
in correlating the plasma-arc-heater facilities in the round-robin study monitored by
Stanford Research Institute (see ref. 1). As a result of the considerable interest in
obtaining flight data on this material, the present flight test (one in a series of Materials
Technology Experiments) was conducted. As in previous tests, the spacecraft containing
the experiments was launched by a Pacemaker vehicle from NASA Wallops Station. At
the end of the flight the spacecraft was recovered from the ocean.

The primary purpose of the test was to obtain ablation performance data on the high-
density phenolic-nylon material. The data were obtained by the use of ablation sensors
and thermocouples and by post-flight measurements of surface recession. In addition to
the primary ablation experiment, secondary experiments consisted of the post-flight mea-
surement of surface recession on several panels of low-density materials attached to
the spacecraft cylinder and the detection of boundary-layer transition with the use of
calorimeters.




The data obtained from these experiments are presented in this paper.

SYMBOLS
M., free-stream Mach number
Pe local surface pressure
pSL standard pressure at sea level
pt:2 total pressure behind a normal shock
P free-stream pressure
T, nose radius
S distance along surface measured from stagnation point
T, free-stream temperature
pSL standard density at sea level
P free-stream density
6] circumferential location

SPACECRAFT

The spacecraft (see fig. 1) was a hemispherically blunted cone with a cylindrical
afterbody. The overall dimensions were a length of 29.5 inches (74.9 ¢cm) and a diameter
of 10 inches (25.4 cm). The effective nose radius was 3.83 inches (9.73 c¢m) and the half-
angle of the cone was 6.25°. The primary structure was 0.062-inch (0.1575-cm) inconel
in the hemisphere-cone region and 0.075-inch (0.1905-cm) 7075 aluminum alloy in the
cylinder region.

Cylindrical sections aft of the spacecraft housed a recovery parachute and the space-
craft telemetry. Figures 2{(a) and 2(b) are photographs of the spacecraft and these cylin-
drical sections, assembled and disassembled.

The thermal protection material on the hemisphere, cone, and forward portion of

the cylinder was high-density phenolic-nylon. The hemisphere-cone section was molded



in one piece. The cone-cylinder shoulder section and the cylindrical section were
machined from molded billets of the material. The size of the molded billets required
these sections to be machined in two pieces rather than in one piece.

The hemisphere-cone is detachable from the cylinder at the separation plane in
the cone (see fig. 1). This arrangement facilitated the assembly of the instrumentation.
In order to avoid flow and erosion problems at the separation plane, the outer cone of
phenolic-nylon was extended onto the cylindrical section. Thus the separation plane was
located 2.25 inches (5.72 cm) forward of the cone-cylinder shoulder.

The density of the phenolic-nylon on this spacecraft was 75.0 Ib/ft3 (1201 kg/m3).
The composition of the material was 50 percent by weight phenolic and 50 percent by
weight finely ground nylon. The same standardized procedures used for making models
for the Stanford Research Institute (SRI) correlation in reference 1 were followed to
ensure that the spacecraft material was identical to the phenolic-nylon used in the SRI
tests. These procedures entailed careful measuring and mixing of the material constitu-
ents as well as accurate timing and temperature and pressure control during the various
steps of the molding process. After molding, final checks of the material were made by
taking X-rays to examine for voids and by measuring the density.

The aft portion of the cylinder was covered with six longitudinal panels of low-
density add-on materials (see fig. 2(a)). There were two panels, mounted 180° apart, of
each of these three materials: teflon foam, filled silicone elastomer, and foamed quartz.
The panels were backed up by a 0.25-inch (0.635-cm) layer of cork, which would have
provided sufficient thermal protection to the primary structure in case of failure of any
of the panels. Three antenna windows, roughly 2 by 3 inches (5.08 by 7.62 cm) in size,
and a teflon patch, roughly 2 by 1.5 inches (5.08 by 3.81 cm) in size, were installed in
cutouts in the add-on panels. Table I presents the locations of these panels and inserts.
The densities of these materials are as follows:

Density
Material (manufacturer) :
Ib/ft3 | kg/m3
Teflon foam (Avco Corp.) 32 513
Filled silicone elastomer, Mod 5 (Avco Corp.) 42 673
Foamed quartz, LI-15 (Lockheed Aircraft Corp.) 15 240
Antenna windows, Avcoat I (Avco Corp.) 62 993
Teflon 130 2082

The phenolic-nylon was bonded to the primary structure with an elastomeric sili-
cone rubber adhesive to permit differential expansion and contraction to occur between
the phenolic-nylon and the structure without cracking the phenolic-nylon. The same
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ablation occurred than was predicted. In such a case, hot gases would have impinged
upon the side of the flush calorimeter and caused inaccuracies in its output. The calo-
rimeters were of the thin-foil type (ref. 3). The thermal sensing area was a 0.011-inch-
thick (0.28-mm), 0.132-inch-diameter (3.35-mm) circular plate of constantan foil over
a dead airspace. The plate had a high-emissivity graphitic coating. The edge of the
plate was in contact with a copper heat sink located under the heat shield. This heat sink
maintained the edge at a constant and low temperature. The juncture of the edge with the
heat sink formed the cold junction of a copper-constantan differential thermocouple. A
copper wire attached to the center of the constantan plate formed the hot junction of the
thermocouple. This copper wire and a lead from the heat sink were attached to a device
for measuring electromotive force (emf). During heating, when a temperature differential
exists between the edge and the center of the constantan foil, an emf is generated. The
incident heat flux on the foil is derived from the emf. This heating rate is essentially a
cold-wall heating rate.

In addition to the instrumentation in the phenolic-nylon, five structural thermocou-
ples were spot welded to the inside of the hemisphere-cone primary structure. These
thermocouples monitored the internal temperature of the spacecraft during the test. They
were located at the stagnation point, at the 22.5°, 459, and 67.5° stations, and at a point
near the separation plane. ~

A standard Inter-Range Instrumentation Group (IRIG) FM/FM telemetry system was
housed in the cylindrical section aft of the parachute section. It consisted of seven IRIG
proportional subcarrier channels — four channels for vehicle performance obtained from
four accelerometers located in this cylindrical section and three channels for experimen-
tal data. The telemeter monitored 32 of the 48 spring-wire sensor events. The remaining
16 sensor events, plus 28 others, were recorded on an event recorder (see ref. 4) located
in the spacecraft cylinder. This event recorder was recovered with the spacecraft.

LAUNCH VEHICLE AND OPERATIONS

The Pacemaker launch vehicle and spacecraft in launch position are shown in fig-
ure 4. The vehicle was launched June 27, 1968, from the NASA Wallops Station launch
facility. It was launched at an elevation angle of 73.3° on an azimuth of 147°.

The propulsion system of the Pacemaker launch vehicle consisted of four stages of
solid-propellant rocket motors: Honest John, Nike, TX-77, and Recruit. All stages were
ignited during vehicle ascent. The first stage was ground fired. After burnout it was
drag separated. The second stage was ignited by an on-board programer with a dual
ignition system. It was blast separated upon ignition of the third stage. An on-ground
computer was used to command fire the third stage. A pressure switch operated by the
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RESULTS AND DISCUSSION

Spacecraft Appearance

The phenolic-nylon ablated almost symmetrically about the spacecraft center line,
with slightly greater recession at the 459 station than at the stagnation point. After the
test, on the hemisphere, the ablation wires and tubes protruded up to 0.27 inch (0.7 cm)
above the surface. Figure 16 is a closeup photograph of the hemisphere showing some of
the protruding tubes and wires.

There were large cracks in the phenolic-nylon material, especially on the cone and
cylinder. In several areas the heat shield had pulled away from and lifted off the primary
structure (see fig. 17). It is assumed that the cracks started to form when the material
cooled during the parachute descent. In some unreported ground facility tests of phenolic-
nylon, cracking occurred during cooling of the material to room temperature after testing.
Often the cracks enlarged for several hours after the material reached room temperature,
apparently relieving the internal stresses that developed in the material during cooling.
On this recovered spacecraft, however, a delayed enlarging of the cracks was not noted.

At the separation plane no unusual or excessive ablation occurred, although that

joint was not bonded.

Surface Recession Results

The recession data measured during the flight are presented in figure 18 and table IL.
These data represent the successful operation of 15 of the 16 make-wire elements in the
dual sensors and 29 of the 32 spring-wire sensors located in the phenolic-nylon material
in the hemispherical region of the spacecraft. None of the sensors located in the phenolic-
nylon material in the cylindrical portion of the spacecraft were triggered. The average
total recession (ATR) indicated in figure 18 was determined from post-flight measurement
of the spacecraft using the dial-gage apparatus described in reference 7. The average
total recession was 0.34 inch (0.864 cm) at the stagnation point and 0.42 inch (1.067 cm)
at the 45° station on the hemispherical nose cap. With the dial-gage apparatus, distances
from the fixture to the spacecraft surface were measured at selected locations before and
after testing. The fixture enables the measurements to be repeated at the same locations.
The difference between the before and after measurements is the profile change. Results
are shown in figure 19 for several longitudinal locations (spacecraft stations and surface
distances) at 12 circumferential locations. For a given location on the cone or cylinder,
the profile change may be either positive or negative depending on whether surface reces-
sion or expansion has occurred. Under certain conditions surface expansion due to either




face can occur, Although recession of the ablation surface is expected in the present test,

apparent surface expansion due to lifting of the heat shield from the primary structure
occurred. Those portions of the cone and cylinder where the separation was obvious are
indicated by X's in figures 19(b), 19(c), and 19(d). A section cut from the spacecraft
shows separation in the cone and cylinder, but indicates that the bond between hemisphere
and primary structure was intact. (See fig. 17.)

An indication of the final char thickness was obtained from the section of phenolic-
nylon cut from the recovered spacecraft. (See fig. 17.) Char thicknesses measured with
a scale are noted in this figure.

In addition to the longitudinal measurements, measurements were made around the
30°, 40°, 500, 60°, and 70° stations on the hemisphere. These results are shown in fig-
ure 20. Some of the ridges and depressions extend longitudinally from the 30° to 70° sta-
tions. They are most noticeable at the 409, 500, and 60° stations. The arithmetic means
of the surface recession and the standard deviations from the means are as follows:

] Surface recession, in. (mm)
Station
Arithmetic mean Standard deviation
309 0.365 { 9.27) 0.016 (0.41)
400 416 (10.57) 020 (0.51)
500 447 (11.35) .031 (0.79)
60° 4068 (10.31) .015 (0.38)
700 290 ( 7.37) 010 (0.25)

Cf the three add-on materials (see fig. 19), the filled silicone elastomer and foamed
quartz showed a minimal amount of recession or shrinkage. Each of the teflon foam pan-
els showed a maximum recession of 0.030 to 0.040 inch (0.0762 to 0.1016 cm). Sections
cut from the recovered spacecraft showed no separation of the bond on the add-on panels.

Temperature Results

The thermocouple plug at the 45° station ablated more than the surrounding mate-
rial. The resulting indentation was about 0.25 inch (0.635 ¢cm) deep. The thermocouple
ribbons protruded above the surface at this location. The tips of the ribbons were partly
melted. Downstream effects on ablation due to the indentation were minor. The temper-

jav)

ture histories obtained for the 45° station are not presented in their entirety because

hey do not represent actual temperatures at the desired locations. Figure 21 presents
he initial portion of the surface temperature history. Beyond 72.2 seconds the data were
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not reliable. The thermocouple plugs in the cone and cylinder ablated smoothly with the
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surrounding surfaces. Temperature-time histories obtained from the cone and cylinder
thermocouples are shown in figure 22. The surface temperatures shown here should be
interpreted carefully. They do not rise and fall with the heating rates, as might be
expected. Rather, they rise sharply with the heating rate to some value and then level
off for the duration of the heating period.

The five structural thermocouples inside the hemisphere-cone showed no tempera-

ture rise during the flight test.

Calorimeter Results

The time history of heating rate obtained from calorimeter C-1 at cylinder station 1
is shown in figure 23. The computed laminar and turbulent heating rates have been super-
imposed on the calorimeter heating rate in order to obtain the time of boundary-layer
transition. Up to 69 seconds the calorimeter heating rate is of the order of magnitude of
the computed laminar heating rate, at 70 seconds the heating rate is in transition, and by
71 seconds the calorimeter heating rate starts to exceed the laminar and approaches the
turbulent heating rate. The heating rate is approximately two-thirds the computed turbu-
lent rate from peak heating until roughly 85 seconds. At this time the calorimeter heating
rate approaches the computed laminar heating rate. The local Reynolds number has been
decreasing and at 85 seconds has dropped below 3.5 X 105,

Additional evidence to support the time of transition from laminar to turbulent
heating can be seen in figure 21, This surface temperature-time history at the 450 sta-
tion shows every data point between 69.2 and 72.2 seconds. The sharp rise in tempera-
ture starting at 71.3 seconds indicates this is the time of transition at the 45° station.

The data from calorimeters C-2 and C-3 were lost in transmission because of

faulty amplifiers.
CONCLUDING REMARKS

High-density phenolic-nylon material was flight tested on a recoverable spacecraft
launched by the Pacemaker vehicle system. Ablation performance data on the phenolic-
nylon were obtained by the use of ablation sensors and thermocouples and by profile-
change measurements. The average total recession was 0.34 inch (0.864 cm) at the
stagnation point and 0.42 inch (1.067 cm) at the 45° station on the hemispherical nose
cap.

Profile-change measurements were also obtained for several panels of low-density
materials attached to the spacecraft cylinder. Foamed quartz and filled silicone elasto-
mer showed a minimal amount of recession or shrinkage. The teflon foam panels showed
a maximum recession of 0.030 to 0.040 inch (0.0762 to 0.1016 cm).
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TABLE T- LOCATION OF INSTRUMENTATION AND ADD-ON MATERIALS

Cylinder |
Cone 2 Cylinder 2
r ~Cylinder 3
Cone | - i i Cylinder 4
s | | [
-
45"_\ §
.
22.5 .
Stagnation
point”,
\\
\\
s
Separation plane —/
I~ T ‘ ‘ T T T T
! Circumferential ' ot Surface distance, | Dual | Spring-| 3-element | B i C-band
location, SP?{T““M . " ablation { wire ‘ thermocouple Calorimeter ?Sldng;\ i antenna
@ : station in. {cm) | sensor | scnsor plugs ! o | window
(a) ! | i
T 1
00 Stagnation point 0 . Yes ‘ ! ; i
22.5° | 1.5 (3.81) ! ' Yes ! ;
3.0 (7.62) ' | ! Yes ! i !
i 4.5 (11.43) . Yes \ |
00 to 60° 21.03 to 32.03 (53.4 to 81.4) ‘ | I Filled 4‘
' | silicone } I
! clastomer ! }
6° 000300 (0to76.2) I
23°¢ ! 0tc 30.0 (0to76.2) ' ‘

409 to 80° 7810 30.78 (73.1 to 78.1) i

19.72 (50.1)

60° 4.5 | ! Yes i L
60° to 120° 7210310 32.03 (53.4 to 81.4) | ; ! Foamed |
l quartz
Teeo T T T © 010300 (0to76.2) e ’
709 Cylinder 1 17.72 (45.0) Yes i '
830 0t030.0 (0 to 76.2) ! :
110° inder 2 19.72 (30.1) | )
1200 450 3.0 (7.62) | Yes |
67.50 4.5 (11.43) | Yes |
120? to 140° 28.78 to 30.78 (73.1 to 78.1) 1 : } Teflon I
; L | patch | |
T1200 0 180° TN Rtedees Geatosid | . T T I Teflon
; ! | foam |
. i S — S . - |
126° ! 0t030.0 (0to i }
143° 0t030.0 (0t076.2) | :
160° to 200° 28.78 to 30.78 (173.1to 78.1) | | Yes
1809 22.5° 1.5 (3.81) !
67.5°9 4.5 (11.43)
Cone 1 7.18 (18.24) i ‘
180° to 240° 21.03 to 32.03 (53.4 to 81.4) I Filled ;
silicone |
| i i elastomer
ET [ 01030.0 (0to76.2) i ' | 1
e (. T ey - ]
LA 010800 0t0762) | | ‘
2100 11.20 (28.43 : ! ¢ | i
- 11.20 (28.43) ' ‘ es ‘ | 1 ]
3.0 (7.62) i Ye i
- S Y N S :
; ; ] i
; 21.03 to 32.03 (53.4 to 81.4) | | Foamed
i : ! ‘ quartz ‘
246° 0to 30.0 (0to 76.2) i ‘ :
— T T T T T o T T i 1
P
]

| 2639 | 0t030.0 (0t076.2) :
700 i Cylinder . i
200 | Cylisder1l 1772 (450) ‘ I
: Yes

| 28.78 10 30.78 (73.1 4

19.72 (50.1)

ylinder 2

" am

= i
191.03 1o 32.03 (53.4 Lo 81.4) |

eflon

|
oam :

|

|
|
\
|

Cylinder 1

[ T owwopwwy |

4circumifcrential locations are measured clockwise, looking at the spacecraft from the {ront.
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TABLE II.- ABLATION DATA

(a) Make-wire ablation rate sensor data

Spacepraft Cir(iglg;fﬁgielntial Ser_lsing depth, Time triggered,
station & ’ in. (em) sec
| (a)
Stag point 09 0.015 (0.038) 71.80
040 ( 102) 73.41
140 (.3586) 88.24
280 (.7387) 136.45
22.5° 180° 0.005 (0.013) 71.75
110 (.279) 84.59
365 (.927) N.T.
290 (.737) 132.87
459 3000 0.010 (0.025) 72.09
.036  (.091) 73.37
090 (.229) 76.37
270 (.6886) 92.79
67.5° 0% 0.004 (0.010) 72.85
.024  (.061) 75.52
240 (.610) 118.62
.064  (.163) 81.33
Cylinder 1 700 0.000 (0.000) N.T.
025 (.064) N.T.
050 (.127) N.T.
090 (.229) N.T.
Cylinder 2 110° 0.000 (0.000) N.T.
025 (.064) N.T.
.050  (.127) N.T.
.090  (.229) N.T.

4N.T. denotes that the make-wire sensor was unaffected by

flight (i.e.,

not triggered).




TABLE II.- ABLATION DATA — Concluded

(b) Spring-wire ablation rate sensor data

Time triggered,

|
Spacecraft Clrclggﬁ,gintlal Sensing depth, S(E)c ‘
station @ , | . {em) Event-recorder data !
§ | Teleénftered ‘
| (a) T Earliest ~ Latest \ ata B
Stag point 0° \‘ 0.035 (0.089) 1 76.27 \ 76.29 76.28 |
‘ 060 (.152) | 82.97 82.98 83.06 ‘
L .160  (.408) 92.64 \ 92.68 | N.T. ‘
‘ [ 310 (.787) l N.T. NT. | N.T. ;
. .
22.59 180° | 0.025 (0.064) (thru) 74.01 | 74.02 | 74.00 |
| 130 (.330) 106.81 ‘ 106.84 | 106.81 |
| 385 (.978) N.T. ‘ N.T. ’ N.T. i
| 310 (.787) N.T. . NT ‘ N.T. ‘
92.5° 00 ‘ 0.026 (0.066) (thru) 73.57 |  73.58 73.61 !
259 (.658) NT. | N N.T. |
045 (114) s | 703 Not TM |
} 085 (.216) 84.04 | 84.07 84.17 ]
459 120° ' 0.046 0.117) 74.63 1‘ 74.64 Not TM ‘
\ 145 (.368) 82.82 ‘ 82.83 Not T™M
610 (1.549) N.T. | N.T. Not TM
L 760 (1.930) NT. | NT. N.T. l
459 240° 0.030 (0.076) T4.75 ‘ 74.76 74.79 '\
086 (.218) 76.09 76.11 76.15 \
185 (.470) (thru) 87.82 ! 87.84 88.01 %
450 (1.143) N.T. | N.T. N.T. J
450 3000 0.035 (0.089) (thru) 13.37 "3.43 73.89 l
056 (.142) 74.71 74.72 74.77 \
110 (.279) 79.40 79.45 79.49 |
290 (.137) 123.96 124.05 123.82 |
67.5° 00 0.024 (0.061) 80.96 80.98 80.95 |
044 (.112) 81.42 81.45 81.54
260 (.660) 98.28 98.37 Not TM |
084 (.213) Not Rec Not Rec 82.04 J
67.5° 120° 0.030 (0.076) 83.39 83.41 83.52 ‘
040 (.102) 85.12 85.16 85.22
110 (.279) 102.26 102.33 Not T™M
.355  (.901) Not Rec Not Rec N.T. )
67.5° 600 0.040 (0.102) 83.03 83.10 83.18 ‘:
160 (.408) 100.94 100.98 101.02 \
460 (1.169) N.T. N.T. Not TM \‘
511 (1.298) Not Rec Not Rec N.T. i
67.5° 180° 0.025 (0.064) (thru) 81.37 81.39 81.50 |
050 (.127) 90.13 90.20 90.18 \
209 (.533) 128.18 128.22 Not TM
L 310 (.787) Not Rec Not Rec N.T. J

2(thru) indicates that the spring-wire sensor was located at its effective sensing depth in a hole

drilled completely through the heat-shield material.

bN.T. indicates that the spring-wire sensor was unaffected by flight (i.e., not triggered); Not TM
indicates that data signals applied to event recorder only (i.e.,
that data signals applied to telemeter only (i.e., not recorded).

not telemetered); and Not Rec indicates

13
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Figure 2.- Photograph of the spacecraft and the parachute and telemetry sections.
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Figure 4.- Photograph of the spacecraft on the launch vehicle.

1-68-4513
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Figure 5.- Photograph of the recovered spacecraft.
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Figure 13.- Computed time histories of local Reynolds numbers.
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Figure 13.- Continued.
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